Introduction to Clustering

Similarity functions, k-means, Gaussian mixture models

slides by
George Chen
Carnegie Mellon University
Fall 2017

Image source: http://static3.businessinsider.com/image/58f900e37522cacd008b4ee9/scott-galloway-netflix-could-be-the-next-300-billion-company.jpg

Suppose Netflix asks you how to go about understanding what kind of TV show it should produce next. How would you go about doing it?

We want to understand user tastes

Movie Recommendation Data

Movie Recommendation Data

Movie Recommendation Data

Item 4

Movie Recommendation Data

Movie Recommendation Data

Movie Recommendation Data

We can also scrape IMDb for a lot of semantic information (actresses, actors, genres, reviews, etc) about movies/TV shows

Movie Recommendation Data

We can also scrape IMDb for a lot of semantic information (actresses, actors, genres, reviews, etc) about movies/TV shows

When looking for structure,

it's helpful to hypothesize what structure there might be

Movie Recommendation Data

Movie Recommendation Data

Simple hypothesis: There are clusters of users with similar taste

Movie Recommendation Data

Simple hypothesis: There are clusters of users with similar taste

Movie Recommendation Data

Simple hypothesis: There are clusters of users with similar taste

Is the Hypothesis on Users True?

Is the Hypothesis on Users True?

black = user dislikes movie
white = user likes movie

Is the Hypothesis on Users True?

black = user dislikes movie
white = user likes movie

Is the Hypothesis on Users True?

black = user dislikes movie
white = user likes movie

Dense part of Netflix Prize data

Defining Similarity

- There usually is no "best" way to define similarity

Art of Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

The Art of
 Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

The Art of
 Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

The Art of
 Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

$$
\frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}
$$

Defining Similarity

- There usually is no "best" way to define similarity

Example: cosine similarity between users

$$
\frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}=0
$$

- There usually is no "best" way to define similarity

Example: cosine similarity $\frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}$

Defining Similarity

- There usually is no "best" way to define similarity

$$
\text { Example: cosine similarity } \frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}
$$

- Also popular: define a distance first and then turn it into a similarity

Defining Similarity

- There usually is no "best" way to define similarity

$$
\text { Example: cosine similarity } \frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}
$$

- Also popular: define a distance first and then turn it into a similarity

Example: Euclidean distance $\left\|Y_{u}-Y_{v}\right\|$

Defining Similarity

- There usually is no "best" way to define similarity

$$
\text { Example: cosine similarity } \frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}
$$

- Also popular: define a distance first and then turn it into a similarity

Example: Euclidean distance $\left\|Y_{u}-Y_{v}\right\|$
Turn into similarity with decaying exponential

Defining Similarity

- There usually is no "best" way to define similarity

$$
\text { Example: cosine similarity } \frac{\left\langle Y_{u}, Y_{v}\right\rangle}{\left\|Y_{u}\right\|\left\|Y_{v}\right\|}
$$

- Also popular: define a distance first and then turn it into a similarity

Example: Euclidean distance $\left\|Y_{u}-Y_{v}\right\|$
Turn into similarity with decaying exponential

$$
\begin{aligned}
& \exp \left(-\gamma\left\|Y_{u}-Y_{v}\right\|\right) \\
& \quad \text { where } \gamma>0
\end{aligned}
$$

Example: Time Series

Example: Time Series

How would you compute a distance between these?

Example: Time Series

How would you compute a distance between these?
Y_{u}

Only observe time steps between 0 and T

Example: Time Series

How would you compute a distance between these?

Only observe time steps between 0 and T

Example: Time Series

How would you compute a distance between these?

One solution: Align them first

Example: Time Series

How would you compute a distance between these?

One solution: Align them first

Example: Time Series

How would you compute a distance between these?

One solution: Align them first
In practice: for time series, very popular to use "dynamic time warping" to first align (it works kind of like how spell check does for words)

Similarity Diagnostics

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:
- Pick any data point

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:
- Pick any data point
- Compute its similarity to all the other data points, and rank them in decreasing over from most similar to least similar

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:
- Pick any data point
- Compute its similarity to all the other data points, and rank them in decreasing over from most similar to least similar
- Inspect the top most similar data points - do they seem reasonable?

Similarity Diagnostics

- As you try different similarity functions, easy thing to check:
- Pick any data point
- Compute its similarity to all the other data points, and rank them in decreasing over from most similar to least similar
- Inspect the top most similar data points - do they seem reasonable?

If the most similar points are not interpretable, it's quite likely that your similarity function isn't very good $=($

Going from Similarities to Clusters

Going from Similarities to Clusters

There's a whole zoo of clustering methods

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:
Generative models

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:
Generative models

1. Pretend data
generated by specific
model with parameters

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:
Generative models

1. Pretend data
generated by specific
model with parameters
2. Learn the parameters
("fit model to data")

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:
Generative models

1. Pretend data
generated by specific
model with parameters
2. Learn the parameters
("fit model to data")
3. Use fitted model to determine cluster assignments

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:
Generative models

1. Pretend data
generated by specific
model with parameters
2. Learn the parameters
("fit model to data")
3. Use fitted model to determine cluster assignments

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:

Generative models

1. Pretend data generated by specific model with parameters
2. Learn the parameters
("fit model to data")
3. Use fitted model to determine cluster assignments

Hierarchical clustering

Top-down: Start with everything in 1 cluster and decide on how to recursively split

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:

Generative models

1. Pretend data
generated by specific model with parameters
2. Learn the parameters ("fit model to data")
3. Use fitted model to determine cluster assignments

Hierarchical clustering

Top-down: Start with everything in 1 cluster and decide on how to recursively split
Bottom-up: Start with everything in its own cluster and decide on how to iteratively merge clusters

Going from Similarities to Clusters

There's a whole zoo of clustering methods
Two main categories we'll talk about:

Generative models

1. Pretend data
generated by specific model with parameters
2. Learn the parameters ("fit model to data")
3. Use fitted model to determine cluster assignments

Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to recursively split
Bottom-up: Start with everything in its own cluster and decide on how to iteratively merge clusters

We're going to start with perhaps the most famous of clustering methods

We're going to start with perhaps the most famous of clustering methods

It won't yet be apparent what this method has to do with generative models

k-means

k-means

k-means

Step 0: Pick k

k-means

Step 0: Pick k
We'll pick k = 2

k-means

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

k-means

Step 0: Pick k
We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

k-means

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

k-means

Step 0: Pick k We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

k-means

Step 0: Pick k
We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster

k-means

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster

Step 0: Pick k

We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k

We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

k-means

Step 0: Pick k

We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

Repeat Step 2: ASSign each ooint to belong to the closest custer
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

Repeat Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k
We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step_2: Assign each point to belong to the closest cluster

Step 0: Pick k We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step_2: Assign each point to belong to the closest cluster

Step 0: Pick k
We'll pick $k=2$

Step 1: Pick guesses for where cluster centers are

Step_2: Assign each point to belong to the closest cluster

Step 0: Pick k
We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Repeat Step 2: ASSign each ooint to belong to the closest custer
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k
We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Repeat Step 2: ASSign each ooint to belong to the closest custer
Step 3: Update cluster means (to be the center of mass per cluster)

Step 0: Pick k We'll pick k = 2

Step 1: Pick guesses for where cluster centers are

Step_2: Assign each point to belong to the closest cluster

k-means

Step 0: Pick k

$$
\text { We'll pick } k=2
$$

Repeat until convergence:

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

k-means

k-means

Final output: cluster centers, cluster assignment for every point

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

How to pick k ?

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

How to pick k?

- Basic check: If you have really, really tiny clusters
\Rightarrow decrease k

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

- More details later

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

How to pick k ?

- Basic check: If you have really, really tiny clusters
\Rightarrow decrease k
- More details later

Suggested way to pick initial cluster centers: "k-means++" method

k-means

Final output: cluster centers, cluster assignment for every point
Remark: Very sensitive to choice of k and initial cluster centers

- More details later

Suggested way to pick initial cluster centers: "k-means++" method (rough intuition: incrementally add centers; favor adding center far away from centers chosen so far)

When does k-means work well?

When does k-means work well?

k-means is related to a more general model, which will help us understand k-means

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

What random process could have generated these points?

Generative Process

Generative Process

Think of flipping a coin

Generative Process

Think of flipping a coin
each outcome:

Generative Process

Think of flipping a coin

each outcome: heads or tails

Generative Process

Think of flipping a coin
each outcome: heads or tails

Each flip doesn't depend on any of the previous flips

Generative Process

Think of flipping a coin
each outcome: 2D point

Each flip doesn't depend on any of the previous flips

Generative Process

Think of flipping a coin

each outcome: 2D point

Each flip doesn't depend on any of the previous flips

Okay, maybe it's bizarre to think of it as a coin...

Generative Process

Think of flipping a coin

each outcome: 2D point

Each flip doesn't depend on any of the previous flips

Okay, maybe it's bizarre to think of it as a coin...

If it helps, just think of it as you pushing a button and a random 2D point appears...

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

We now discuss a way to generate points in this manner

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Quick Reminder: 1D Gaussian

This is a 1D Gaussian distribution

2D Gaussian

This is a 2D Gaussian distribution

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Gaussian Mixture Model (GMM)

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains
(We've been looking at $d=2$)
- Each mountain corresponds to a different cluster

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been looking at $d=2$)
- Each mountain corresponds to a different cluster
- Different mountains can have different peak heights

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been
looking at $d=2$)
- Each mountain corresponds to a different cluster
- Different mountains can have different peak heights
- One missing thing we haven't discussed yet: different mountains can have different shapes

2D Gaussian Shape

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

In 2D, you can more generally have ellipse-shaped Gaussians

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

Less uncertainty

More uncertainty

In 2D, you can more generally have ellipse-shaped Gaussians

Top-down view of an example 2D Gaussian distribution

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

More uncertainty
In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding relationship between variables

Top-down view of an example 2D Gaussian distribution

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

Less uncertainty

More uncertainty

In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding relationship between variables

Can't have arbitrary shapes

Top-down view of an example 2D Gaussian distribution

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been looking at $d=2$)
- Each mountain corresponds to a different cluster
- Different mountains can have different peak heights

Gaussian Mixture Model (GMM)

- For a fixed value k and dimension d, a GMM is the sum of k d-dimensional Gaussian distributions so that the overall probability distribution looks like k mountains (We've been
looking at $d=2$)
- Each mountain corresponds to a different cluster
- Different mountains can have different peak heights
- Different mountains can have different ellipse shapes (captures "covariance" information)

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.5$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.5$

Gaussian mean $=5$
Gaussian std dev $=1$

What do you think this looks like?

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.5$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.5$

Gaussian mean $=5$
Gaussian std dev $=1$

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

What do you think this looks like?

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

What do you think this looks like?

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev = 1

How to generate 1D points from this GMM:

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev = 1

How to generate 1D points from this GMM:

1. Flip biased coin (with probability of heads 0.7)

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

How to generate 1D points from this GMM:

1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5 , std dev 1

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=0.7$

Gaussian mean $=-5$
Gaussian std dev $=1$

Cluster 2

Probability of generating a point from cluster $2=0.3$

Gaussian mean $=5$
Gaussian std dev $=1$

How to generate 1D points from this GMM:

1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5 , std dev 1

If tails: sample 1 point from Gaussian mean 5, std dev 1

Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian std dev $=\sigma_{1}$

Cluster 2

Probability of generating a point from cluster $2=\pi_{2}$

Gaussian mean $=\mu_{2}$
Gaussian std dev $=\sigma_{2}$

How to generate 1D points from this GMM:

1. Flip biased coin (with probability of heads π_{1})
2. If heads: sample 1 point from Gaussian mean μ_{1}, std dev σ_{1}

If tails: sample 1 point from Gaussian mean μ_{2}, std dev σ_{2}

Example: 1D GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian std dev $=\sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$
Gaussian std dev $=\sigma_{k}$

How to generate 1D points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, std dev σz

Example: 2D GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian covariance $=\Sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$
Gaussian covariance $=\Sigma_{k}$

How to generate 2D points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, covariance Σz

Example: 2D GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1} 2 \mathrm{D}$ point
Gaussian covariance $=\Sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$ 2D point
Gaussian covariance $=\Sigma_{k}$

How to generate 2D points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, covariance Σz

Example: 2D GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1} 2 \mathrm{D}$ point
Gaussian covariance $=\Sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$ 2D point
Gaussian covariance $=\Sigma_{k}$

How to generate 2D points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, covariance Σz

GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian covariance $=\Sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$
Gaussian covariance $=\Sigma_{k}$

How to generate points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, covariance Σz

High-Level Idea of GMM

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

"All models are wrong, but some are useful."

-George Edward Pelham Box

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
- Input: d-dimensional data points, your guess for k

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
- Input: d-dimensional data points, your guess for k
- Output: $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}$

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
- Input: d-dimensional data points, your guess for k
- Output: $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}$
- After learning a GMM:

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
- Input: d-dimensional data points, your guess for k
- Output: $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}$
- After learning a GMM:
- For any d-dimensional data point, can figure out probability of it belonging to each of the clusters

High-Level Idea of GMM

- Generative model that gives a hypothesized way in which data points are generated

In reality, data are unlikely generated the same way!
In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
- Input: d-dimensional data points, your guess for k
- Output: $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}$
- After learning a GMM:
- For any d-dimensional data point, can figure out probability of it belonging to each of the clusters

k-means

Step 0: Pick k

$$
\text { We'll pick } k=2
$$

Repeat until convergence:

Step 1: Pick guesses for where cluster centers are

Step 2: Assign each point to belong to the closest cluster
Step 3: Update cluster means (to be the center of mass per cluster)

k-means

Step 0: Pick k
Step 1: Pick guesses for where cluster centers are

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

(Rough Intuition) Learning a GMM

Step 0: Pick k
Step 1: Pick guesses for cluster means and covariances

Repeat until convergence:
Step 2: Compute probability of each point belonging to each of the k clusters

Step 3: Update cluster means and covariances carefully accounting for probabilities of each point belonging to each of the clusters

This algorithm is called the Expectation-Maximization (EM) algorithm specifically for GMM's (and approximately does maximum likelihood) (Note: EM by itself is a general algorithm not just for GMM's)

Relating k-means to GMM's

Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., in the 1D case it means they all have same std dev):

Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., in the 1D case it means they all have same std dev):

- k-means approximates the EM algorithm for GMM's

Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., in the 1D case it means they all have same std dev):

- k-means approximates the EM algorithm for GMM's
- Notice that k-means does a "hard" assignment of each point to a cluster, whereas the EM algorithm does a "soft" (probabilistic) assignment of each point to a cluster

Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., in the 1D case it means they all have same std dev):

- k-means approximates the EM algorithm for GMM's
- Notice that k-means does a "hard" assignment of each point to a cluster, whereas the EM algorithm does a "soft" (probabilistic) assignment of each point to a cluster

Interpretation: We know when k-means should work! It should work when the data appear as if they're from a GMM with true clusters that "look like circles"

k-means should do well on this

But not on this

